Data Analytics Operations Lead Engineer
- Función del trabajo:
- Fecha de publicación:
- Fecha de finalización:
- ID:
- 2507041757W
Comparte este empleo:
Kenvue está reclutando actualmente para a:
Lo que hacemos
En Kenvue, nos damos cuenta del extraordinario poder del cuidado diario. Sobre la base de más de un siglo de herencia y arraigados en la ciencia, somos el hogar de marcas icónicas, incluidas NEUTROGENA®, AVEENO,® TYLENOL,® LISTERINE,® JOHNSON'S® y BAND-AID® que ya conoces y amas. La ciencia es nuestra pasión; El cuidado es nuestro talento.
Quiénes somos
Nuestro equipo global está formado por ~ 22.000 personas brillantes con una cultura laboral en la que cada voz importa y cada contribución es apreciada. Nos apasionan las ideas, innovación y comprometidos con la entrega de los mejores productos a nuestros clientes. Con experiencia y empatía, ser un Kenvuer significa tener el poder de impactar a millones de personas todos los días. Ponemos a las personas en primer lugar, nos preocupamos ferozmente, nos ganamos la confianza de la ciencia y resolvemos con coraje, ¡y tenemos oportunidades brillantes esperándote! Únase a nosotros para dar forma a nuestro futuro y al suyo. Para obtener más información, haga clic en aquí.
Role reports to:
Sr. Director, Enterprise Data ProductsUbicación:
Asia Pacific, India, Karnataka, BangaloreLugar de trabajo:
Totalmente in situWhat will you
Who we are
At Kenvue, we realize the extraordinary power of everyday care. Built on over a century of heritage and rooted in science, we’re the house of iconic brands - including Neutrogena, Aveeno, Tylenol, Listerine, Johnson’s and BAND-AID® Brand Adhesive Bandages that you already know and love. Science is our passion; care is our talent. Our global team is made up of ~ 22,000 diverse and brilliant people, passionate about insights, innovation and committed to delivering the best products to our customers. With expertise and empathy, being a Kenvuer means having the power to impact the life of millions of people every day. We put people first, care fiercely, earn trust with science and solve with courage – and have brilliant opportunities waiting for you! Join us in shaping our future–and yours. For more information, click here.
Role reports to: Manager, Data Products & Operations
Location: Bangalore, India
Travel %: up to 10%
What you will do
A Data & Analytics Operations Engineer (often called a DataOps Engineer) is a specialized role focused on the "production line" of data. They bridge the gap between data engineering (which builds the systems) and data analysis (which uses the data), ensuring that pipelines are automated, reliable, and secure.
Core Responsibilities
Pipeline Engineering & Orchestration: Designing and/or maintaining scalable ETL/ELT pipelines using Azure Data Factory (ADF) or Databricks Workflows for ingestion and Azure Databricks (PySpark/SQL) for complex transformations.
Lakehouse Management: Implementing and optimizing Medallion Architecture (Bronze, Silver, Gold layers) using Delta Lake to ensure data consistency through ACID transactions.
DataOps & Automation: Automating deployments in a scrum of scrum environment, testing, and monitoring of data workflows using Azure DevOps, GitHub Actions, or CI/CD pipelines for Databricks notebooks and jobs.
User Feedback: Manage tickets intake and drive appropriate resolution by collaborating with other DevOps or Data Engineers.
Governance & Security: Managing centralized access control, data lineage, and auditing across workspaces using Unity Catalog.
Performance & FinOps: Tuning Spark jobs (partitioning, Z-ordering, caching) for performance and monitoring cluster usage to optimize Azure and Databricks costs.
Operational Support: Providing L2/L3 support for production job failures, performing root cause analysis (RCA), and ensuring strict adherence to Service Level Agreements (SLAs).
Collaboration: Work closely with business analysts, data scientists, and DevOps engineers to ensure successful data platform implementations.
Communication: Excellent communication and articulation skills especially when engaging with stakeholders.
Required Technical Skills
Cloud Platform: Mastery of Azure services, specifically ADLS Gen2, Azure Data Factory, Azure Synapse, and Azure Key Vault.
Databricks Ecosystem: Expert knowledge of PySpark, Spark SQL, Delta Live Tables (DLT), and Databricks Workflows.
Programming: High proficiency in Python and SQL; experience with Scala or PowerShell is often a plus.
Infrastructure as Code (IaC): Experience in provisioning and managing Azure data resources.
Monitoring: Familiarity with Azure Monitor, Log Analytics, and Application Insights for proactive alerting.
Qualifications
Education: Bachelor’s or Master’s degree in Computer Science, Engineering, or a related quantitative field.
Experience: 4 – 8 years in data engineering or DataOps, with at least 2 years specifically focused on the Databricks/Azure stack.
Preferred Certifications:
Microsoft Certified: Azure Data Engineer Associate
Databricks Certified Professional Data Engineer
What’s in it for you
· Competitive Total Rewards Package*
· Paid Company Holidays, Paid Vacation, Volunteer Time & More!
Learning & Development Opportunities
Employee Resource Groups
This list could vary based on location/region
*Note: Total Rewards at Kenvue include salary, bonus (if applicable) and benefits. Your Talent Access Partner will be able to share more about our total rewards offerings and the specific salary range for the relevant location(s) during the recruitment & hiring process.
Kenvue is proud to be an Equal Opportunity Employer. All qualified applicants will receive consideration for employment based on business needs, job requirements, and individual qualifications, without regard to race, color, religion, sex, sexual orientation, gender identity, age, national origin, protected veteran status, or any other legally protected characteristic, and will not be discriminated against on the basis of disability.
Si usted es una persona con una discapacidad, consulte nuestra página de Disability Assistance para obtener información sobre cómo solicitar una adaptación.