Vai al contenuto
Torna alle Carriere

Sr. Machine Learning Engineer

Job function:
Data di pubblicazione:
Data di fine:
Job ID:
2607042402W

Condividi questo lavoro:

Kenvue sta attualmente reclutando per a:

Sr. Machine Learning Engineer

Cosa facciamo

A Kenvue, ci rendiamo conto dello straordinario potere della cura quotidiana. Costruiti su oltre un secolo di tradizione e radicati nella scienza, siamo la casa di marchi iconici, tra cui NEUTROGENA®, AVEENO,® TYLENOL,® LISTERINE,® JOHNSON'S® e BAND-AID® che già conosci e ami. La scienza è la nostra passione; la cura è il nostro talento.

Chi siamo

Il nostro team globale è composto da ~ 22.000 persone brillanti con una cultura del posto di lavoro in cui ogni voce conta e ogni contributo è apprezzato. Siamo appassionati di intuizioni, innovazione e impegno a fornire i migliori prodotti ai nostri clienti. Con competenza ed empatia, essere un Kenvuer significa avere il potere di avere un impatto su milioni di persone ogni giorno. Mettiamo le persone al primo posto, ci prendiamo cura di noi, ci guadagniamo la fiducia della scienza e risolviamo con coraggio - e abbiamo brillanti opportunità che ti aspettano! Unisciti a noi per plasmare il nostro futuro e il tuo. Per ulteriori informazioni, fare clic su here.

Role riporta a:

Digital Solutions Manager

Ubicazione:

Asia Pacific, India, Karnataka, Bangalore

Luogo di lavoro:

Ibrido

Cosa farai

Sr. ML Ops Engineer

Job Overview

We are seeking a Sr. MLOps Engineer with 5+ years of experience to design, automate, and manage the lifecycle of machine learning models. This role is focused on building high-performance, scalable ML infrastructure on Microsoft Azure that bridges the gap between data science and production-grade engineering. You will be responsible for creating a "Plug-and-Play" deployment framework that ensures our ML solutions are resilient, secure, and cost-optimized.

Key Responsibilities

1. Pipeline Architecture & Automation

·       Scalable ML Pipelines: Design and manage end-to-end ML pipelines using Azure ML, Databricks, and PySpark to handle large-scale data processing and model training.

·       DevSecOps Integration: Build and maintain automated CI/CD pipelines using GitHub Actions, integrating SonarQube to enforce strict code quality and security standards.

·       Reusable Frameworks: Develop modular templates for various ML use cases to streamline deployment and drive operational efficiency across the enterprise.

2. Deployment & Orchestration

·       Containerization: Utilize Azure Kubernetes Service (AKS) and Docker to containerize and deploy ML models, ensuring high availability and seamless scaling.

·       API Management: Design and manage robust, secure APIs to facilitate seamless interactions between ML models and downstream applications.

·       Solution Architecture: Understand and contribute to the overall system architecture to ensure ML components are modular and scalable.

3. Optimization & Governance

·       Model Lifecycle Management: Perform model optimization, monitor for data drift, and implement automated data refresh checks to maintain model accuracy.

·       Cost Engineering: Implement cost-monitoring strategies to ensure efficient resource utilization during high-compute training and deployment phases.

·       Documentation: Provide detailed technical documentation for workflows, pipeline templates, and optimization strategies to ensure long-term maintainability.

4. Collaboration

·       Cross-Functional Synergy: Act as the technical liaison between Data Scientists, DevOps, and IT teams to ensure smooth model transitions across Dev, QA, and Production environments.

Required Qualifications

·       Education: Bachelor’s degree in engineering, Computer Science, or a related field.

·       Experience: 5+ years of total experience with a deep focus on the Azure MLOps tool stack.

·       Production Mastery: Proven track record of deploying and maintaining ML models in high-scale production environments.

·       Technical Proficiency: * Hands-on expertise with Azure Machine Learning and Databricks.

o   Strong understanding of Kubernetes (AKS) or API-based deployment platforms.

o   Solid grasp of DevOps practices and containerization (Docker).

o   Experience with code quality automation tools like SonarQube.

·       Soft Skills: Exceptional problem-solving skills and the ability to thrive in a fast-paced, collaborative environment.

 

Desired Qualifications

·       Architectural Mindset: Familiarity with broader solution architecture principles is a strong plus.

·       Certifications: Azure certifications such as AI-900, DP-100, or AZ-305 are highly preferred.

 

Se sei un individuo con disabilità, controlla il nostro "Pagina di assistenza per disabili per informazioni su come richiedere un alloggio.